Multiple ergodic averages for tempered functions

نویسندگان

چکیده

Following Frantzikinakis' approach on averages for Hardy field functions of different growth, we add to the topic by studying corresponding tempered functions, a class which also contains that oscillate and is in general more restrictive deal with. Our main result existence explicit expression \begin{document}$ L^2 $\end{document}-norm limit aforementioned averages, turns out, as case, be "expected" one. The ingredients are use of, now classical, PET induction (introduced Bergelson), covering namely "nice" (developed Chu-Frantzikinakis-Host polynomials Frantzikinakis functions) some equidistribution results nilmanifolds (analogous ones case).

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Pointwise Convergence of Some Multiple Ergodic Averages

We show that for every ergodic system (X, μ,T1, . . . ,Td) with commuting transformations, the average 1 Nd+1 ∑ 0≤n1,...,nd≤N−1 ∑ 0≤n≤N−1 f1(T n 1 d ∏ j=1 T n j j x) f2(T n 2 d ∏ j=1 T n j j x) · · · fd(T n d d ∏ j=1 T n j j x). converges for μ-a.e. x ∈ X as N → ∞. If X is distal, we prove that the average 1 N N ∑ i=0 f1(T n 1 x) f2(T n 2 x) · · · fd(T n d x) converges for μ-a.e. x ∈ X as N → ∞...

متن کامل

Convergence of weighted polynomial multiple ergodic averages

In this article we study weighted polynomial multiple ergodic averages. A sequence of weights is called universally good if any polynomial multiple ergodic average with this sequence of weights converges in L. We find a necessary condition and show that for any bounded measurable function φ on an ergodic system, the sequence φ(Tnx) is universally good for almost every x. The linear case was cov...

متن کامل

Multifractal analysis of some multiple ergodic averages

In this paper we study the multiple ergodic averages 1 n n ∑ k=1 φ(xk, xkq , · · · , xkql−1 ), (xn) ∈ Σm on the symbolic space Σm = {0, 1, · · · ,m− 1}N ∗ where m ≥ 2, l ≥ 2, q ≥ 2 are integers. We give a complete solution to the problem of multifractal analysis of the limit of the above multiple ergodic averages. Actually we develop a non-invariant and non-linear version of thermodynamic forma...

متن کامل

Convergence of Multiple Ergodic Averages for Some Commuting Transformations

We prove the L convergence for the linear multiple ergodic averages of commuting transformations T1, . . . , Tl, assuming that each map Ti and each pair TiT −1 j is ergodic for i 6= j. The limiting behavior of such averages is controlled by a particular factor, which is an inverse limit of nilsystems. As a corollary we show that the limiting behavior of linear multiple ergodic averages is the s...

متن کامل

Norm Convergence of Multiple Ergodic Averages for Commuting Transformations

Let T1, . . . , Tl : X → X be commuting measure-preserving transformations on a probability space (X,X , μ). We show that the multiple ergodic averages 1 N PN−1 n=0 f1(T n 1 x) . . . fl(T n l x) are convergent in L2(X,X , μ) as N → ∞ for all f1, . . . , fl ∈ L (X,X , μ); this was previously established for l = 2 by Conze and Lesigne [2] and for general l assuming some additional ergodicity hypo...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Discrete and Continuous Dynamical Systems

سال: 2021

ISSN: ['1553-5231', '1078-0947']

DOI: https://doi.org/10.3934/dcds.2020314